منابع مشابه
Error estimates for Gauss–Turán quadratures and their Kronrod extensions
We study the kernel Kn,s(z) of the remainder term Rn,s( f ) of Gauss–Turán–Kronrod quadrature rules with respect to one of the generalized Chebyshev weight functions for analytic functions. The location on the elliptic contours where the modulus of the kernel attains its maximum value is investigated. This leads to effective L∞-error bounds of Gauss–Turán–Kronrod quadratures. Following Kronrod,...
متن کاملAn Estimation Error Bound for Pixelated Sensing
This paper considers the ubiquitous problem of estimating the state (e.g., position) of an object based on a series of noisy measurements. The standard approach is to formulate this problem as one of measuring the state (or a function of the state) corrupted by additive Gaussian noise. This model assumes both (i) the sensor provides a measurement of the true target (or, alternatively, a separat...
متن کاملAn Improved Error Bound for Gaussian Interpolation
It’s well known that there is a so-called exponential-type error bound for Gaussian interpolation which is the most powerful error bound hitherto. It’s of the form |f(x) − s(x)| ≤ c1(c2d) c3 d ‖f‖h where f and s are the interpolated and interpolating functions respectively, c1, c2, c3 are positive constants, d is the fill-distance which roughly speaking measures the spacing of the data points, ...
متن کاملAn Upper Bound on the Bayesian Error
In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1972
ISSN: 0025-5718
DOI: 10.2307/2005096